Welcome to the Nexus of Ethics, Psychology, Morality, Philosophy and Health Care

Welcome to the nexus of ethics, psychology, morality, technology, health care, and philosophy

Wednesday, December 27, 2023

This algorithm could predict your health, income, and chance of premature death

Holly Barker
Science.org
Originally published 18 DEC 23

Here is an excerpt:

The researchers trained the model, called “life2vec,” on every individual’s life story between 2008 to 2016, and the model sought patterns in these stories. Next, they used the algorithm to predict whether someone on the Danish national registers had died by 2020.

The model’s predictions were accurate 78% of the time. It identified several factors that favored a greater risk of premature death, including having a low income, having a mental health diagnosis, and being male. The model’s misses were typically caused by accidents or heart attacks, which are difficult to predict.

Although the results are intriguing—if a bit grim—some scientists caution that the patterns might not hold true for non-Danish populations. “It would be fascinating to see the model adapted using cohort data from other countries, potentially unveiling universal patterns, or highlighting unique cultural nuances,” says Youyou Wu, a psychologist at University College London.

Biases in the data could also confound its predictions, she adds. (The overdiagnosis of schizophrenia among Black people could cause algorithms to mistakenly label them at a higher risk of premature death, for example.) That could have ramifications for things such as insurance premiums or hiring decisions, Wu adds.


Here is my summary:

A new algorithm, trained on a mountain of Danish life stories, can peer into your future with unsettling precision. It can predict your health, income, and even your odds of an early demise. This, achieved by analyzing the sequence of life events, like getting a job or falling ill, raises both possibilities and ethical concerns.

On one hand, imagine the potential for good: nudges towards healthier habits or financial foresight, tailored to your personal narrative. On the other, anxieties around bias and discrimination loom. We must ensure this powerful tool is used wisely, for the benefit of all, lest it exacerbate existing inequalities or create new ones. The algorithm’s gaze into the future, while remarkable, is just that – a glimpse, not a script.