As part of a recent experiment, scientists asked specially programmed robots to scan blocks with people’s faces on them, then put the “criminal” in a box. The robots repeatedly chose a block with a Black man’s face.
Those virtual robots, which were programmed with a popular artificial intelligence algorithm, were sorting through billions of images and associated captions to respond to that question and others, and may represent the first empirical evidence that robots can be sexist and racist, according to researchers. Over and over, the robots responded to words like “homemaker” and “janitor” by choosing blocks with women and people of color.
The study, released last month and conducted by institutions including Johns Hopkins University and the Georgia Institute of Technology, shows the racist and sexist biases baked into artificial intelligence systems can translate into robots that use them to guide their operations.
Companies have been pouring billions of dollars into developing more robots to help replace humans for tasks such as stocking shelves, delivering goods or even caring for hospital patients. Heightened by the pandemic and a resulting labor shortage, experts describe the current atmosphere for robotics as something of a gold rush. But tech ethicists and researchers are warning that the quick adoption of the new technology could result in unforeseen consequences down the road as the technology becomes more advanced and ubiquitous.
“With coding, a lot of times you just build the new software on top of the old software,” said Zac Stewart Rogers, a supply chain management professor from Colorado State University. “So, when you get to the point where robots are doing more … and they’re built on top of flawed roots, you could certainly see us running into problems.”
Researchers in recent years have documented multiple cases of biased artificial intelligence algorithms. That includes crime prediction algorithms unfairly targeting Black and Latino people for crimes they did not commit, as well as facial recognition systems having a hard time accurately identifying people of color.